This paper considers the problem of inference in cluster randomized trials where treatment status is determined according to a "matched pairs" design. Here, by a cluster randomized experiment, we mean one in which treatment is assigned at the level of the cluster; by a "matched pairs" design we mean that a sample of clusters is paired according to baseline, cluster-level covariates and, within each pair, one cluster is selected at random for treatment. We study the large sample behavior of a weighted difference-in-means estimator and derive two distinct sets of results depending on if the matching procedure does or does not match on cluster size. We then propose a variance estimator which is consistent in either case. We also study the behavior of a randomization test which permutes the treatment status for clusters within pairs, and establish its finite sample and asymptotic validity for testing specific null hypotheses.
翻译:本文根据“ 相配对” 设计来决定治疗状况的集束随机试验中的推断问题。 这里, 我们是指集束随机试验中, 将治疗分配到组群一级; “ 配对” 设计中, 我们意指组群样本按照基线、 组群级共变数进行配对, 在每对中, 随机选择一个组群进行处理。 我们研究加权利益差异估计器的大型抽样行为, 并根据匹配程序是否与组群大小不匹配而得出两套不同的结果。 我们然后提出一个差异估计器, 两者都是一致的。 我们还研究随机测试的操作方法, 它将组合体的处理状况相互匹配, 并确立其有限的样本和测试特定无效假体的无症状有效性 。