This paper introduces a heuristic topology optimization framework for thin-walled, 2D extruded lattice structures subject to complex high-speed loading. The proposed framework optimizes the wall thickness distribution in the lattice cross section through different thickness update schemes, inspired by the idea of equalization of absorbed energy density across all lattice walls. The proposed framework is ubiquitous and can be used in explicit dynamic simulations, which is the primary numerical method used in crashworthiness studies. No information on the material tangent stiffness matrix is required, and complex material behaviors and complex loading conditions can be handled. Three numerical examples are presented to demonstrate framework capabilities: (1) Optimization of a long, slender column under axial compression to maximize specific energy absorption, (2) Optimization of a lattice-filled sandwich panel under off-center blast loading to minimize material damage, (3) Generation of a periodic lattice core design under blast loading. The results show that the framework can effectively increase specific energy absorption or minimize material damage with as few as 25 finite element simulations and optimization iterations.
翻译:本文介绍了一个薄墙、2D压式压轴结构的超高表层优化框架,这种结构需经过复杂的高速装货。拟议框架通过不同厚度更新计划,在吸收能量密度均衡的理念的启发下,通过不同厚度更新计划,优化衬垫宽的壁壁壁壁壁壁壁壁壁厚分布。拟议框架无处不在,可用于显性动态模拟,这是防火性研究使用的主要数字方法。不需要关于材料色调硬度矩阵的信息,也无法处理复杂的材料行为和复杂的装货条件。提出了三个数字例子,以证明框架能力:(1) 在轴压下优化一个长的、薄体柱,以最大限度地吸收具体的能源;(2) 优化在中下装爆炸性爆炸性下装货的装货板,以尽量减少物质损害;(3) 在爆炸性研究中制造一个定期的衬垫核心设计。结果显示,框架能够有效地增加具体的能源吸收量或尽量减少材料损害,只有25个有限的元素模拟和优化其。