We address the problem of visual storytelling, i.e., generating a story for a given sequence of images. While each sentence of the story should describe a corresponding image, a coherent story also needs to be consistent and relate to both future and past images. To achieve this we develop ordered image attention (OIA). OIA models interactions between the sentence-corresponding image and important regions in other images of the sequence. To highlight the important objects, a message-passing-like algorithm collects representations of those objects in an order-aware manner. To generate the story's sentences, we then highlight important image attention vectors with an Image-Sentence Attention (ISA). Further, to alleviate common linguistic mistakes like repetitiveness, we introduce an adaptive prior. The obtained results improve the METEOR score on the VIST dataset by 1%. In addition, an extensive human study verifies coherency improvements and shows that OIA and ISA generated stories are more focused, shareable, and image-grounded.
翻译:我们处理视觉故事讲述问题,即为特定图像序列制作一个故事。虽然故事的每个句子都应描述一个相应的图像,但一个连贯的故事也需要前后一致,并且与未来和过去图像都相关。为了实现这一目标,我们开发了有命令的图像关注(OIA)。内审办模型在句子对应图像与其他序列图像中的重要区域之间相互作用。为了突出重要对象,一种类似信息传递的算法以有秩序的方式收集这些对象的表达方式。为了生成故事的句子,我们然后用图像感应(ISA)来突出重要的图像关注矢量。此外,为了减轻常见的语言错误,例如重复性,我们引入了适应性前。所获得的结果使VIST数据集的METEOR分数提高了1%。此外,一项广泛的人类研究证实了一致性的改进,并显示内审办和ISA生成的故事更加集中、可分享和基于图像。