We propose LiDAL, a novel active learning method for 3D LiDAR semantic segmentation by exploiting inter-frame uncertainty among LiDAR frames. Our core idea is that a well-trained model should generate robust results irrespective of viewpoints for scene scanning and thus the inconsistencies in model predictions across frames provide a very reliable measure of uncertainty for active sample selection. To implement this uncertainty measure, we introduce new inter-frame divergence and entropy formulations, which serve as the metrics for active selection. Moreover, we demonstrate additional performance gains by predicting and incorporating pseudo-labels, which are also selected using the proposed inter-frame uncertainty measure. Experimental results validate the effectiveness of LiDAL: we achieve 95% of the performance of fully supervised learning with less than 5% of annotations on the SemanticKITTI and nuScenes datasets, outperforming state-of-the-art active learning methods. Code release: https://github.com/hzykent/LiDAL.
翻译:我们建议使用3D LiDAR 语义分隔法,这是3D LiDAR 语义分隔法的一种新颖的积极学习方法。 我们的核心想法是,一个经过良好训练的模式应该产生稳健的结果,而不论对现场扫描的视角如何,因此,跨框架模型预测的不一致性为积极的抽样选择提供了非常可靠的不确定性度量。为了实施这一不确定性度量,我们引入了新的跨框架差异和增缩配方,作为积极选择的衡量标准。此外,我们还通过预测和纳入假标签来显示额外的绩效收益,这些假标签也是利用拟议的框架间不确定性度量来选择的。实验结果验证了LiDAL的功效:我们实现了95%的全面监督学习的绩效,而关于Semantic-KITTI和nuScenes数据集的说明不到5%,超前状态的活跃学习方法。代码发布: https://github.com/hzykent/LiDAL。