Massive multiple-input multiple-output can obtain more performance gain by exploiting the downlink channel state information (CSI) at the base station (BS). Therefore, studying CSI feedback with limited communication resources in frequency-division duplexing systems is of great importance. Recently, deep learning (DL)-based CSI feedback has shown considerable potential. However, the existing DL-based explicit feedback schemes are difficult to deploy because current fifth-generation mobile communication protocols and systems are designed based on an implicit feedback mechanism. In this paper, we propose a DL-based implicit feedback architecture to inherit the low-overhead characteristic, which uses neural networks (NNs) to replace the precoding matrix indicator (PMI) encoding and decoding modules. By using environment information, the NNs can achieve a more refined mapping between the precoding matrix and the PMI compared with codebooks. The correlation between subbands is also used to further improve the feedback performance. Simulation results show that, for a single resource block (RB), the proposed architecture can save 25.0% and 40.0% of overhead compared with Type I codebook under two antenna configurations, respectively. For a wideband system with 52 RBs, overhead can be saved by 30.7% and 48.0% compared with Type II codebook when ignoring and considering extracting subband correlation, respectively.


翻译:通过利用基地站(BS)的下链接频道状态信息(CSI),大量投入的多重产出能够获得更多的绩效收益。 因此,在频率分配系统中,以有限的通信资源研究CSI反馈,在频率分解系统中,使用有限的通信资源来取代预先编码矩阵指标(PMI)编码和解码模块,非常重要。最近,基于CSI的深入学习(DL)反馈显示出相当大的潜力。然而,现有的基于DL的基于DL的明确的反馈计划很难部署,因为目前的第五代移动通信协议和系统是在一个隐含的反馈机制的基础上设计的。在本文中,我们提议一个基于DL的隐含反馈结构,以继承低overhead的特征,即使用神经网络(NNS)来用有限的通信资源来取代预编码矩阵指标(PMI)编码和解码模块模块。通过使用环境信息,NNNPS可以使预编码矩阵与PMI之间的绘图更加精细化。子频带之间的关联也被用来进一步改进反馈的绩效。模拟结果表明,对于一个单一的资源区块(RB),拟议的结构可以节省25.0%和40.0%的间接费用,而分别与I型代码比I型代码与25BDRBDRBS的版本分别用于255O型的25的版本和25版的版本。

0
下载
关闭预览

相关内容

【AAAI2021】用于多标签图像分类的深度语义词典学习
专知会员服务
14+阅读 · 2020年12月30日
【SIGIR2020】学习词项区分性,Learning Term Discrimination
专知会员服务
15+阅读 · 2020年4月28日
【反馈循环自编码器】FEEDBACK RECURRENT AUTOENCODER
专知会员服务
22+阅读 · 2020年1月28日
深度学习界圣经“花书”《Deep Learning》中文版来了
专知会员服务
233+阅读 · 2019年10月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
ACM UMAP 2018:用户建模与个性化国际会议征搞
LibRec智能推荐
4+阅读 · 2017年10月9日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
6+阅读 · 2018年3月28日
Arxiv
6+阅读 · 2018年2月8日
Arxiv
9+阅读 · 2018年1月30日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
ACM UMAP 2018:用户建模与个性化国际会议征搞
LibRec智能推荐
4+阅读 · 2017年10月9日
相关论文
Top
微信扫码咨询专知VIP会员