This paper proposes an active learning (AL) algorithm to solve regression problems based on inverse-distance weighting functions for selecting the feature vectors to query. The algorithm has the following features: (i) supports both pool-based and population-based sampling; (ii) it is not tailored to a particular class of predictors; (iii) can handle known and unknown constraints on the queryable feature vectors; and (iv) can run either sequentially, or in batch mode, depending on how often the predictor is retrained. The potentials of the method are shown in numerical tests on illustrative synthetic problems and real-world datasets from the UCI repository. A Python implementation of the algorithm, that we call IDEAL (Inverse-Distance based Exploration for Active Learning), is available at \url{http://cse.lab.imtlucca.it/~bemporad/ideal}.
翻译:本文提出了一种积极的学习(AL)算法,以解决基于反距离加权函数的回归问题,用于选择要查询的特性矢量。算法具有以下特点:(一) 支持以池为基础的抽样和以人口为基础的抽样;(二) 不针对特定类别的预测器;(三) 能够处理对可查询特性矢量的已知和未知限制;(四) 可以依次运行,或以批量方式运行,视预测器再受训练的频率而定。该方法的潜力表现在UCI 存储处关于说明性合成问题和真实世界数据集的数字测试中。