Multiparameter persistent homology has been largely neglected as an input to machine learning algorithms. We consider the use of lattice-based convolutional neural network layers as a tool for the analysis of features arising from multiparameter persistence modules. We find that these show promise as an alternative to convolutions for the classification of multidimensional persistence modules.
翻译:多参数持久性同系物在很大程度上被忽略,作为机器学习算法的一种投入。 我们认为,使用基于 lattice 的电磁神经网络层是分析多参数持久性模块所产生特征的工具。 我们发现,这些都显示了作为多维持久性模块分类演进的替代方法的希望。