Automatic classification of running styles can enable runners to obtain feedback with the aim of optimizing performance in terms of minimizing energy expenditure, fatigue, and risk of injury. To develop a system capable of classifying running styles using wearables, we collect a dataset from 10 healthy runners performing 8 different pre-defined running styles. Five wearable devices are used to record accelerometer data from different parts of the lower body, namely left and right foot, left and right medial tibia, and lower back. Using the collected dataset, we develop a deep learning solution which consists of a Convolutional Neural Network and Long Short-Term Memory network to first automatically extract effective features, followed by learning temporal relationships. Score-level fusion is used to aggregate the classification results from the different sensors. Experiments show that the proposed model is capable of automatically classifying different running styles in a subject-dependant manner, outperforming several classical machine learning methods (following manual feature extraction) and a convolutional neural network baseline. Moreover, our study finds that subject-independent classification of running styles is considerably more challenging than a subject-dependant scheme, indicating a high level of personalization in such running styles. Finally, we demonstrate that by fine-tuning the model with as few as 5% subject-specific samples, considerable performance boost is obtained.

0
下载
关闭预览

相关内容

In classification tasks, the classification accuracy diminishes when the data is gathered in different domains. To address this problem, in this paper, we investigate several adversarial models for domain adaptation (DA) and their effect on the acoustic scene classification task. The studied models include several types of generative adversarial networks (GAN), with different loss functions, and the so-called cycle GAN which consists of two interconnected GAN models. The experiments are performed on the DCASE20 challenge task 1A dataset, in which we can leverage the paired examples of data recorded using different devices, i.e., the source and target domain recordings. The results of performed experiments indicate that the best performing domain adaptation can be obtained using the cycle GAN, which achieves as much as 66% relative improvement in accuracy for the target domain device, while only 6\% relative decrease in accuracy on the source domain. In addition, by utilizing the paired data examples, we are able to improve the overall accuracy over the model trained using larger unpaired data set, while decreasing the computational cost of the model training.

0
0
下载
预览

Weakly supervised object detection (WSOD) is a challenging task that requires simultaneously learn object classifiers and estimate object locations under the supervision of image category labels. A major line of WSOD methods roots in multiple instance learning which regards images as bags of instance and selects positive instances from each bag to learn the detector. However, a grand challenge emerges when the detector inclines to converge to discriminative parts of objects rather than the whole objects. In this paper, under the hypothesis that optimal solutions are included in local minima, we propose a discoveryand-selection approach fused with multiple instance learning (DS-MIL), which finds rich local minima and select optimal solutions from multiple local minima. To implement DS-MIL, an attention module is designed so that more context information can be captured by feature maps and more valuable proposals can be collected during training. With proposal candidates, a re-rank module is designed to select informative instances for object detector training. Experimental results on commonly used benchmarks show that our proposed DS-MIL approach can consistently improve the baselines, reporting state-of-the-art performance.

0
0
下载
预览

This work investigates an extension of transfer learning applied in machine learning algorithms to the emerging hybrid end-to-end quantum neural network (QNN) for spoken command recognition (SCR). Our QNN-based SCR system is composed of classical and quantum components: (1) the classical part mainly relies on a 1D convolutional neural network (CNN) to extract speech features; (2) the quantum part is built upon the variational quantum circuit with a few learnable parameters. Since it is inefficient to train the hybrid end-to-end QNN from scratch on a noisy intermediate-scale quantum (NISQ) device, we put forth a hybrid transfer learning algorithm that allows a pre-trained classical network to be transferred to the classical part of the hybrid QNN model. The pre-trained classical network is further modified and augmented through jointly fine-tuning with a variational quantum circuit (VQC). The hybrid transfer learning methodology is particularly attractive for the task of QNN-based SCR because low-dimensional classical features are expected to be encoded into quantum states. We assess the hybrid transfer learning algorithm applied to the hybrid classical-quantum QNN for SCR on the Google speech command dataset, and our classical simulation results suggest that the hybrid transfer learning can boost our baseline performance on the SCR task.

0
0
下载
预览

The recent GPT-3 model (Brown et al., 2020) achieves remarkable few-shot performance solely by leveraging a natural-language prompt and a few task demonstrations as input context. Inspired by their findings, we study few-shot learning in a more practical scenario, where we use smaller language models for which fine-tuning is computationally efficient. We present LM-BFF--better few-shot fine-tuning of language models--a suite of simple and complementary techniques for fine-tuning language models on a small number of annotated examples. Our approach includes (1) prompt-based fine-tuning together with a novel pipeline for automating prompt generation; and (2) a refined strategy for dynamically and selectively incorporating demonstrations into each context. Finally, we present a systematic evaluation for analyzing few-shot performance on a range of NLP tasks, including classification and regression. Our experiments demonstrate that our methods combine to dramatically outperform standard fine-tuning procedures in this low resource setting, achieving up to 30% absolute improvement, and 11% on average across all tasks. Our approach makes minimal assumptions on task resources and domain expertise, and hence constitutes a strong task-agnostic method for few-shot learning.

0
9
下载
预览

Compared with single-label image classification, multi-label image classification is more practical and challenging. Some recent studies attempted to leverage the semantic information of categories for improving multi-label image classification performance. However, these semantic-based methods only take semantic information as type of complements for visual representation without further exploitation. In this paper, we present a innovative path towards the solution of the multi-label image classification which considers it as a dictionary learning task. A novel end-to-end model named Deep Semantic Dictionary Learning (DSDL) is designed. In DSDL, an auto-encoder is applied to generate the semantic dictionary from class-level semantics and then such dictionary is utilized for representing the visual features extracted by Convolutional Neural Network (CNN) with label embeddings. The DSDL provides a simple but elegant way to exploit and reconcile the label, semantic and visual spaces simultaneously via conducting the dictionary learning among them. Moreover, inspired by iterative optimization of traditional dictionary learning, we further devise a novel training strategy named Alternately Parameters Update Strategy (APUS) for optimizing DSDL, which alteratively optimizes the representation coefficients and the semantic dictionary in forward and backward propagation. Extensive experimental results on three popular benchmarks demonstrate that our method achieves promising performances in comparison with the state-of-the-arts. Our codes and models are available at https://github.com/ZFT-CQU/DSDL.

0
6
下载
预览

Fashion is a complex social phenomenon. People follow fashion styles from demonstrations by experts or fashion icons. However, for machine agent, learning to imitate fashion experts from demonstrations can be challenging, especially for complex styles in environments with high-dimensional, multimodal observations. Most existing research regarding fashion outfit composition utilizes supervised learning methods to mimic the behaviors of style icons. These methods suffer from distribution shift: because the agent greedily imitates some given outfit demonstrations, it can drift away from one style to another styles given subtle differences. In this work, we propose an adversarial inverse reinforcement learning formulation to recover reward functions based on hierarchical multimodal representation (HM-AIRL) during the imitation process. The hierarchical joint representation can more comprehensively model the expert composited outfit demonstrations to recover the reward function. We demonstrate that the proposed HM-AIRL model is able to recover reward functions that are robust to changes in multimodal observations, enabling us to learn policies under significant variation between different styles.

0
7
下载
预览

In information retrieval (IR) and related tasks, term weighting approaches typically consider the frequency of the term in the document and in the collection in order to compute a score reflecting the importance of the term for the document. In tasks characterized by the presence of training data (such as text classification) it seems logical that the term weighting function should take into account the distribution (as estimated from training data) of the term across the classes of interest. Although `supervised term weighting' approaches that use this intuition have been described before, they have failed to show consistent improvements. In this article we analyse the possible reasons for this failure, and call consolidated assumptions into question. Following this criticism we propose a novel supervised term weighting approach that, instead of relying on any predefined formula, learns a term weighting function optimised on the training set of interest; we dub this approach \emph{Learning to Weight} (LTW). The experiments that we run on several well-known benchmarks, and using different learning methods, show that our method outperforms previous term weighting approaches in text classification.

0
8
下载
预览

Deep ConvNets have shown great performance for single-label image classification (e.g. ImageNet), but it is necessary to move beyond the single-label classification task because pictures of everyday life are inherently multi-label. Multi-label classification is a more difficult task than single-label classification because both the input images and output label spaces are more complex. Furthermore, collecting clean multi-label annotations is more difficult to scale-up than single-label annotations. To reduce the annotation cost, we propose to train a model with partial labels i.e. only some labels are known per image. We first empirically compare different labeling strategies to show the potential for using partial labels on multi-label datasets. Then to learn with partial labels, we introduce a new classification loss that exploits the proportion of known labels per example. Our approach allows the use of the same training settings as when learning with all the annotations. We further explore several curriculum learning based strategies to predict missing labels. Experiments are performed on three large-scale multi-label datasets: MS COCO, NUS-WIDE and Open Images.

0
5
下载
预览

Lane mark detection is an important element in the road scene analysis for Advanced Driver Assistant System (ADAS). Limited by the onboard computing power, it is still a challenge to reduce system complexity and maintain high accuracy at the same time. In this paper, we propose a Lane Marking Detector (LMD) using a deep convolutional neural network to extract robust lane marking features. To improve its performance with a target of lower complexity, the dilated convolution is adopted. A shallower and thinner structure is designed to decrease the computational cost. Moreover, we also design post-processing algorithms to construct 3rd-order polynomial models to fit into the curved lanes. Our system shows promising results on the captured road scenes.

0
5
下载
预览

Model update lies at the heart of object tracking.Generally, model update is formulated as an online learning problem where a target model is learned over the online training dataset. Our key innovation is to \emph{learn the online learning algorithm itself using large number of offline videos}, i.e., \emph{learning to update}. The learned updater takes as input the online training dataset and outputs an updated target model. As a first attempt, we design the learned updater based on recurrent neural networks (RNNs) and demonstrate its application in a template-based tracker and a correlation filter-based tracker. Our learned updater consistently improves the base trackers and runs faster than realtime on GPU while requiring small memory footprint during testing. Experiments on standard benchmarks demonstrate that our learned updater outperforms commonly used update baselines including the efficient exponential moving average (EMA)-based update and the well-designed stochastic gradient descent (SGD)-based update. Equipped with our learned updater, the template-based tracker achieves state-of-the-art performance among realtime trackers on GPU.

0
7
下载
预览
小贴士
相关论文
Shiwei Zhang,Wei Ke,Lin Yang,Qixiang Ye,Xiaopeng Hong,Yihong Gong,Tong Zhang
0+阅读 · 10月18日
Tianyu Gao,Adam Fisch,Danqi Chen
9+阅读 · 2020年12月31日
Fengtao Zhou,Sheng Huang,Yun Xing
6+阅读 · 2020年12月23日
Imitation Learning for Fashion Style Based on Hierarchical Multimodal Representation
Shizhu Liu,Shanglin Yang,Hui Zhou
7+阅读 · 2020年4月13日
Learning to Weight for Text Classification
Alejandro Moreo Fernández,Andrea Esuli,Fabrizio Sebastiani
8+阅读 · 2019年3月28日
Learning a Deep ConvNet for Multi-label Classification with Partial Labels
Thibaut Durand,Nazanin Mehrasa,Greg Mori
5+阅读 · 2019年2月26日
Efficient Road Lane Marking Detection with Deep Learning
Ping-Rong Chen,Shao-Yuan Lo,Hsueh-Ming Hang,Sheng-Wei Chan,Jing-Jhih Lin
5+阅读 · 2018年9月11日
Bi Li,Wenxuan Xie,Wenjun Zeng,Wenyu Liu
7+阅读 · 2018年6月19日
相关VIP内容
专知会员服务
80+阅读 · 4月17日
专知会员服务
28+阅读 · 1月31日
专知会员服务
56+阅读 · 2020年12月2日
专知会员服务
79+阅读 · 2020年6月2日
专知会员服务
64+阅读 · 2020年5月31日
专知会员服务
41+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
65+阅读 · 2019年10月12日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
12+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
8+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
7+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
29+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
23+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
16+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
3+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
11+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top