This article deals with the efficient and certified numerical approximation of the smallest eigenvalue and the associated eigenspace of a large-scale parametric Hermitian matrix. For this aim, we rely on projection-based model order reduction (MOR), i.e., we approximate the large-scale problem by projecting it onto a suitable subspace and reducing it to one of a much smaller dimension. Such a subspace is constructed by means of weak greedy-type strategies. After detailing the connections with the reduced basis method for source problems, we introduce a novel error estimate for the approximation error related to the eigenspace associated with the smallest eigenvalue. Since the difference between the second smallest and the smallest eigenvalue, the so-called spectral gap, is crucial for the reliability of the error estimate, we propose efficiently computable upper and lower bounds for higher eigenvalues and for the spectral gap, which enable the assembly of a subspace for the MOR approximation of the spectral gap. Based on that, a second subspace is then generated for the MOR approximation of the eigenspace associated with the smallest eigenvalue. We also provide efficiently computable conditions to ensure that the multiplicity of the smallest eigenvalue is fully captured in the reduced space. This work is motivated by a specific application: the repeated identifications of the states with minimal energy, the so-called ground states, of parametric quantum spin system models.
翻译:暂无翻译