Understanding the suitability of agricultural land for applying specific management practices is of great importance for sustainable and resilient agriculture against climate change. Recent developments in the field of causal machine learning enable the estimation of intervention impacts on an outcome of interest, for samples described by a set of observed characteristics. We introduce an extensible data-driven framework that leverages earth observations and frames agricultural land suitability as a geospatial impact assessment problem, where the estimated effects of agricultural practices on agroecosystems serve as a land suitability score and guide decision making. We formulate this as a causal machine learning task and discuss how this approach can be used for agricultural planning in a changing climate. Specifically, we extract the agricultural management practices of "crop rotation" and "landscape crop diversity" from crop type maps, account for climate and land use data, and use double machine learning to estimate their heterogeneous effect on Net Primary Productivity (NPP), within the Flanders region of Belgium from 2010 to 2020. We find that the effect of crop rotation was insignificant, while landscape crop diversity had a small negative effect on NPP. Finally, we observe considerable effect heterogeneity in space for both practices and analyze it.
翻译:了解农业用地是否适合应用具体的管理做法,对于可持续和具有抗御力的气候变化农业非常重要。因果机学习领域的最新发展使得能够对一系列观察到的特征所描述的样本对利益结果的干预影响作出估计。我们引入了一个可扩展的数据驱动框架,利用地球观测和框架农业用地的适宜性作为地理空间影响评估问题,其中农业做法对农业生态系统的预计影响是土地适合性分数和指导决策。我们将此作为一个因果机学习任务来拟订,并讨论如何在变化的气候中将这一方法用于农业规划。具体地说,我们从作物类型图中提取“作物轮作”和“景观作物多样性”的农业管理做法,说明气候和土地使用数据,并使用双机学习来估计其对比利时佛兰德斯地区2010年至2020年净初级生产力(净生产力)的不同影响。我们发现,作物轮作的影响微不足道,而地貌作物多样性对NPPP具有很小的负面影响。最后,我们观察到在空间对这两种做法和分析都有相当大的异性效应。