Despite the fact, a handful of scholars have endorsed the Internet of Things (IoT) as an effective transformative tool for shifting traditional farming to smart farming, relatively little study has addressed the enabling role of smart agriculture in achieving sustainable agriculture and green climate. Researchers are more focused on technological invention and model introduction rather than discussing societal or global development goals. Sustainable development goals (SDGs) designed by United Nations (UN), therefore demand discussions as SDGs targets have a closer implication of technology. To fill this gap, in this study a model of smart agriculture is developed and centring the model we investigated how the model addresses SDGs targets. The investigation suggests that smart agriculture supports targets mentioned in Goal 6, 7, 8, 9, 11 and 12 of SDG. This research is very important, both for developing and developed nations since most of the nations are moving more towards industrialization and aiming to achieve the SDG goals This research is expected to provide a path to the IT practitioners, governments and developing agencies on how technological intervention can provide a more sustainable agricultural world.


翻译:尽管有少数学者认可物联网(IoT)作为将传统农业转向智能农业的有效变革工具,但研究较少涉及智能农业在实现可持续农业和绿色气候方面的扶持作用,研究人员更注重技术发明和模式介绍,而不是讨论社会或全球发展目标。可持续发展目标(SDG)由联合国设计,因此要求讨论作为SDG目标的技术影响更为密切。为填补这一空白,本研究开发了一个智能农业模式,并集中了我们调查的模型如何应对SDG目标的模型。调查表明,智能农业支持SDG目标6、7、8、9、11和12中提及的目标。这一研究对发展中国家和发达国家都非常重要,因为大多数国家正在朝工业化方向迈进,并旨在实现SDG目标。预计这项研究将为信息技术从业人员、政府和发展机构提供一条途径,说明技术干预如何能够提供一个更可持续的农业世界。

0
下载
关闭预览

相关内容

智慧农业是现代信息技术与传统农业深度融合形成的数字化农业方式。智慧农业是在信息技术和先进装备条件的基础上,实现生产过程的精准感知、智能控制、智慧管理,追求农业更高资源利用率、更高劳动生产率和更好从业体验感的农业形态。 智慧农业是现代农业的高级形式。智慧农业,以数据、系统、智能装备为特征要素,与传统农业中的土地、动植物、生产工具等生产要素深度融合,实现生产作业精准化、管理决策自主化、产业提升链式化,促进农业进入生产便捷、管理高效、产业协调的现代农业新时代。 智慧农业具有鲜明的数字化、系统化、智能化特征。智慧农业按领域划分,会形成诸如智慧种植业、智慧养殖业、智慧加工业等多个生产类型,按应用场景划分会形成智慧农场、智慧温室、智慧加工厂等多个场所类别,但无论是哪一种形式,都离不开大数据、先进系统、智能装备、数字化基础设施等核心要素。智慧农业就是通过现代信息技术与农业的深度融合,让机器与系统来主动感知信息、定量决策、智能控制、个性化服务,这是一项全新的数字化产业方式。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
28+阅读 · 2022年1月13日
VIP会员
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员