Autonomous vehicles face tremendous challenges while interacting with human drivers in different kinds of scenarios. Developing control methods with safety guarantees while performing interactions with uncertainty is an ongoing research goal. In this paper, we present a real-time safe control framework using bi-level optimization with Control Barrier Function (CBF) that enables an autonomous ego vehicle to interact with human-driven cars in ramp merging scenarios with a consistent safety guarantee. In order to explicitly address motion uncertainty, we propose a novel extension of control barrier functions to a probabilistic setting with provable chance-constrained safety and analyze the feasibility of our control design. The formulated bi-level optimization framework entails first choosing the ego vehicle's optimal driving style in terms of safety and primary objective, and then minimally modifying a nominal controller in the context of quadratic programming subject to the probabilistic safety constraints. This allows for adaptation to different driving strategies with a formally provable feasibility guarantee for the ego vehicle's safe controller. Experimental results are provided to demonstrate the effectiveness of our proposed approach.
翻译:自主车辆在与人类驾驶者在不同情况下互动时面临巨大的挑战。 开发有安全保障的控制方法,同时进行与不确定性的互动是一个持续的研究目标。 在本文件中,我们提出了一个实时安全控制框架,使用控制屏障功能(CBF)的双层优化,使自主自我驱动汽车能够在斜坡上与人驾驶的汽车互动,同时提供一致的安全保障。为了明确解决动议不确定性,我们提议将控制屏障功能扩大到一种概率性环境,同时有可行的机会限制的安全性,并分析我们的控制设计的可行性。制定双级优化框架需要首先选择自我驱动器在安全和主要目标方面的最佳驾驶风格,然后在受概率安全限制的情况下,在四边式编程中最低限度地修改名义控制器。这有利于适应不同的驾驶战略,为自驾驶器的安全控制器提供正式可行的可行性保障。提供了实验结果,以证明我们拟议方法的有效性。