Planning in environments with other agents whose future actions are uncertain often requires compromise between safety and performance. Here our goal is to design efficient planning algorithms with guaranteed bounds on the probability of safety violation, which nonetheless achieve non-conservative performance. To quantify a system's risk, we define a natural criterion called interval risk bounds (IRBs), which provide a parametric upper bound on the probability of safety violation over a given time interval or task. We present a novel receding horizon algorithm, and prove that it can satisfy a desired IRB. Our algorithm maintains a dynamic risk budget which constrains the allowable risk at each iteration, and guarantees recursive feasibility by requiring a safe set to be reachable by a contingency plan within the budget. We empirically demonstrate that our algorithm is both safer and less conservative than strong baselines in two simulated autonomous driving experiments in scenarios involving collision avoidance with other vehicles, and additionally demonstrate our algorithm running on an autonomous class 8 truck.
翻译:与未来行动不确定的其他代理人一起规划环境往往需要安全与绩效之间的妥协。 我们的目标是设计有效的规划算法,在安全违规概率方面有保证的界限,但安全违规概率却有保证,从而实现非保守性性绩效。 为了量化系统的风险,我们定义了一个自然标准,称为间隙风险界限(IRBs ), 它提供了在特定时间间隔或任务期间发生安全违规概率的参数上限。 我们提出了一个新型的递减地平线算法,并证明它能够满足人们所期望的IRB。 我们的算法维持着一个动态风险预算,它制约了每次循环的可允许风险,并通过要求在预算中的应急计划能够达到的安全套件来保证周期性可行性。 我们从经验上证明,在两个模拟自主驾驶实验中,我们的算法比强的基线更安全、更保守,在两个模拟自动驾驶实验中,涉及与其他车辆的碰撞避免,并额外证明我们的算法运行在自动8级卡车上。