Recent years saw a plethora of work on explaining complex intelligent agents. One example is the development of several algorithms that generate saliency maps which show how much each pixel attributed to the agents' decision. However, most evaluations of such saliency maps focus on image classification tasks. As far as we know, there is no work that thoroughly compares different saliency maps for Deep Reinforcement Learning agents. This paper compares four perturbation-based approaches to create saliency maps for Deep Reinforcement Learning agents trained on four different Atari 2600 games. All four approaches work by perturbing parts of the input and measuring how much this affects the agent's output. The approaches are compared using three computational metrics: dependence on the learned parameters of the agent (sanity checks), faithfulness to the agent's reasoning (input degradation), and run-time. In particular, during the sanity checks we find issues with two approaches and propose a solution to fix one of those issues.


翻译:近些年来,在解释复杂的智能剂方面做了大量工作。一个例子是开发了几种算法,这些算法生成了显示每个像素在多大程度上归因于代理人的决定的显著图象。然而,对此类突出图的多数评价侧重于图像分类任务。据我们所知,没有一项工作彻底比较深强化学习剂的不同突出图象。本文比较了四种以扰动为基础的方法,为在四个不同的Atari 2600游戏中受过训练的深强化学习剂制作突出图象。所有四种方法都通过干扰部分输入和测量它对代理人产出的影响。三种计算指标比较了这些方法:依赖代理人的学习参数(卫生检查)、对代理人推理的忠诚性(生产退化)以及运行时间。特别是在理智检查过程中,我们发现两种方法的问题,并提出解决其中一种的方法。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
Arxiv
4+阅读 · 2015年3月20日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Top
微信扫码咨询专知VIP会员