In this paper we consider finding an approximate second-order stationary point (SOSP) of nonconvex conic optimization that minimizes a twice differentiable function over the intersection of an affine subspace and a convex cone. In particular, we propose a Newton-conjugate gradient (Newton-CG) based barrier method for finding an $(\epsilon,\sqrt{\epsilon})$-SOSP of this problem. Our method is not only implementable, but also achieves an iteration complexity of ${\cal O}(\epsilon^{-3/2})$, which matches the best known iteration complexity of second-order methods for finding an $(\epsilon,\sqrt{\epsilon})$-SOSP of unconstrained nonconvex optimization. The operation complexity of $\widetilde{\cal O}(\epsilon^{-3/2}\min\{n,\epsilon^{-1/4}\})$, measured by the amount of fundamental operations, is also established for our method.
翻译:在本文中,我们考虑找到一个大约的二阶固定点(SOSP),即非convex二次优化,以最大限度地减少在松子子空间和锥锥形锥体交汇处的两倍不同功能。特别是,我们提议以牛顿-conjugate梯度(Newton-CG)为基础的屏障方法来寻找美元(efsilon,\ sqrt ~epsilon) $-SOSP来解决这个问题。我们的方法不仅可以实施,而且实现美元($)的循环复杂性,以基本操作量衡量,这与发现美元(epslon,\sqrt ~epsilon)-SOSP$(美元)的已知第二阶梯度复杂度最相匹配。我们的方法也确定了 $(luslon)-3/2 ⁇ min ⁇ n,\epsilon ⁇ -1/4 ⁇ ) 的操作复杂性。