Event detection tasks can help people quickly determine the domain from complex texts. It can also provides powerful support for downstream tasks of natural language processing.Existing methods implement fixed-type learning only based on large amounts of data. When extending to new classes, it is often required to retain the original data and retrain the model.Incremental event detection tasks enables lifelong learning of new classes, but most existing methods need to retain a large number of original data or face the problem of catastrophic forgetting. Apart from that, it is difficult to obtain enough data for model training due to the lack of high-quality data in practical.To address the above problems, we define a new task in the domain of event detection, which is few-shot incremental event detection.This task require that the model should retain previous type when learning new event type in each round with limited input. We recreate and release a benchmark dataset in the few-shot incremental event detection task based on FewEvent.The dataset we published is more appropriate than other in this new task. In addition, we propose two benchmark approaches, IFSED-K and IFSED-KP, which can address the task in different ways. Experiments results have shown that our approach has a higher F1 score and is more stable than baseline.
翻译:事件探测任务可以帮助人们从复杂的文本中快速确定领域。 它也可以为自然语言处理的下游任务提供强有力的支持。 存在的方法只能根据大量数据实施固定类型的学习。 在向新类别扩展时, 通常需要保留原始数据并重新对模型进行再培训。 强化事件探测任务可以让新类别终身学习, 但大多数现有方法需要保留大量原始数据, 或面临灾难性的遗忘问题。 除此之外, 由于缺乏高质量的实用数据, 我们很难获得足够的数据进行模型培训。 为了解决上述问题, 我们定义了事件探测领域的新任务, 即少见的递增事件探测。 这项任务要求模型在每轮学习新事件类型时保留前一种类型, 且投入有限。 我们重新创建并发布一个基准数据集, 用于根据微小的Event 进行的微小递增事件探测任务。 我们所公布的数据集比其他新任务更合适。 此外, 我们提议了两种基准方法, IFSED- K 和 IFSED- KP KP, 这两种基准方法能够以不同的方式处理任务。