With the rise of machine learning and deep learning based applications in practice, monitoring, i.e. verifying that these operate within specification, has become an important practical problem. An important aspect of this monitoring is to check whether the inputs (or intermediates) have strayed from the distribution they were validated for, which can void the performance assurances obtained during testing. There are two common approaches for this. The, perhaps, more classical one is outlier detection or novelty detection, where, for a single input we ask whether it is an outlier, i.e. exceedingly unlikely to have originated from a reference distribution. The second, perhaps more recent approach, is to consider a larger number of inputs and compare its distribution to a reference distribution (e.g. sampled during testing). This is done under the label drift detection. In this work, we bridge the gap between outlier detection and drift detection through comparing a given number of inputs to an automatically chosen part of the reference distribution.


翻译:随着机器学习和深层次学习应用在实践中的兴起,监测,即核查这些应用在规格范围内运作,已成为一个重要的实际问题,监测的一个重要方面是检查投入(或中间体)是否偏离了它们被验证的分布,这可以使测试期间获得的性能保证无效。对此,有两种共同的方法。也许,比较典型的方法是异端检测或新颖的检测,对于一个输入,我们问它是否是一个外端,即极不可能来自参考分布。第二个可能是较近期的方法是考虑更多的投入并将其分布与参考分布进行比较(例如在测试期间抽样),这是在标签漂移探测下进行的。在这项工作中,我们通过将某一输入的数量与自动选定的参考分布部分进行比较,缩小了外部检测和漂移探测之间的差距。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
17+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
知识图谱本体结构构建论文合集
专知会员服务
106+阅读 · 2019年10月9日
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月30日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
Zero-Shot Object Detection
Arxiv
9+阅读 · 2018年7月27日
Arxiv
3+阅读 · 2018年6月14日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
17+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
知识图谱本体结构构建论文合集
专知会员服务
106+阅读 · 2019年10月9日
相关资讯
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年8月30日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
Zero-Shot Object Detection
Arxiv
9+阅读 · 2018年7月27日
Arxiv
3+阅读 · 2018年6月14日
Top
微信扫码咨询专知VIP会员