The Practimum-Optimum (P-O) algorithm represents a paradigm shift in developing automatic optimization products for complex real-life business problems such as large-scale manufacturing scheduling. It leverages deep business domain expertise to create a group of virtual human expert (VHE) agents with different "schools of thought" on how to create high-quality schedules. By computerizing them into algorithms, P-O generates many valid schedules at far higher speeds than human schedulers are capable of. Initially, these schedules can also be local optimum peaks far away from high-quality schedules. By submitting these schedules to a reinforced machine learning algorithm (RL), P-O learns the weaknesses and strengths of each VHE schedule, and accordingly derives reward and punishment changes in the Demand Set that will modify the relative priorities for time and resource allocation that jobs received in the prior iteration that led to the current state of the schedule. These cause the core logic of the VHE algorithms to explore, in the subsequent iteration, substantially different parts of the schedules universe and potentially find higher-quality schedules. Using the hill climbing analogy, this may be viewed as a big jump, shifting from a given local peak to a faraway promising start point equipped with knowledge embedded in the demand set for future iterations. This is a fundamental difference from most contemporary algorithms, which spend considerable time on local micro-steps restricted to the neighbourhoods of local peaks they visit. This difference enables a breakthrough in scale and performance for fully automatic manufacturing scheduling in complex organizations. The P-O algorithm is at the heart of Plataine Scheduler that, in one click, routinely schedules 30,000-50,000 tasks for real-life complex manufacturing operations.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Anomalous Instance Detection in Deep Learning: A Survey
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员