Capsule networks were proposed as an alternative approach to Convolutional Neural Networks (CNNs) for learning object-centric representations, which can be leveraged for improved generalization and sample complexity. Unlike CNNs, capsule networks are designed to explicitly model part-whole hierarchical relationships by using groups of neurons to encode visual entities, and learn the relationships between those entities. Promising early results achieved by capsule networks have motivated the deep learning community to continue trying to improve their performance and scalability across several application areas. However, a major hurdle for capsule network research has been the lack of a reliable point of reference for understanding their foundational ideas and motivations. The aim of this survey is to provide a comprehensive overview of the capsule network research landscape, which will serve as a valuable resource for the community going forward. To that end, we start with an introduction to the fundamental concepts and motivations behind capsule networks, such as equivariant inference in computer vision. We then cover the technical advances in the capsule routing mechanisms and the various formulations of capsule networks, e.g. generative and geometric. Additionally, we provide a detailed explanation of how capsule networks relate to the popular attention mechanism in Transformers, and highlight non-trivial conceptual similarities between them in the context of representation learning. Afterwards, we explore the extensive applications of capsule networks in computer vision, video and motion, graph representation learning, natural language processing, medical imaging and many others. To conclude, we provide an in-depth discussion regarding the main hurdles in capsule network research, and highlight promising research directions for future work.


翻译:提议建立胶囊网络,作为革命神经网络的替代方法,以学习以物体为中心的表达方式,这可以用来改进一般化和抽样复杂性。与CNN不同,胶囊网络设计的目的是通过使用神经神经组群对视觉实体进行编码,并学习这些实体之间的关系,来明确模拟全层的等级关系。胶囊网络的早期结果有望推动深层学习界继续设法提高它们在若干应用领域的性能和可缩缩放性。然而,胶囊网络研究的一个主要障碍是缺乏了解其基本想法和动机的可靠参照点。这次调查的目的是提供一个对胶囊网络研究前景的全面概览,这将为社区向前发展提供宝贵的资源。为此,我们首先介绍胶囊网络的基本概念和动机,例如计算机视觉的变异性推断。我们接着介绍胶囊路机制的技术进步以及胶囊网络的未来前景,例如,基因化和几何测量。此外,我们详细解释胶囊网络的主要结构网络是如何在模型处理中,我们从模型学的深度研究中,我们从模型学的深度研究中,从模型研究中,从模型研究中,从深度研究中,从深度研究其他网络的深度研究中,从深度研究中,我们从深度研究中,从深度研究中,从深度研究中,从深度研究中,从深度研究中,从深度研究中,从深度研究中,从深度研究中,从深度研究中,从深度研究中,从深度研究中,从深度研究中,从深度研究中,从深度研究中,从深度研究中,从深度研究中,从深度研究中,从中,从深度研究中,从深度研究中,从深度研究中,到深度研究,从深度研究,从深度研究中,从深度研究中,从深度研究,从深度研究,到深度研究,从深度研究,从深度研究,从深度研究,从深度研究,到深度研究,从深度研究,到深度研究,到深度研究,从深度研究,从深度研究中,从深度研究中,到深度研究中,到深度研究,从深度研究,从深度研究,从深度研究中,从深度研究中,从深度研究,从深度研究中,从深度研究中,从深度研究中,从深度研究中,到深度研究中,到深度研究,从深度研究,从深度研究,从深度研究,从深度研究,从

5
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
69+阅读 · 2022年6月13日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
57+阅读 · 2021年5月3日
Arxiv
37+阅读 · 2021年2月10日
Arxiv
17+阅读 · 2020年11月15日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
Arxiv
35+阅读 · 2020年1月2日
Arxiv
12+阅读 · 2019年3月14日
Arxiv
53+阅读 · 2018年12月11日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关论文
Arxiv
69+阅读 · 2022年6月13日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
57+阅读 · 2021年5月3日
Arxiv
37+阅读 · 2021年2月10日
Arxiv
17+阅读 · 2020年11月15日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
Arxiv
35+阅读 · 2020年1月2日
Arxiv
12+阅读 · 2019年3月14日
Arxiv
53+阅读 · 2018年12月11日
相关基金
Top
微信扫码咨询专知VIP会员