Generated video scenes for action-centric sequence descriptions like recipe instructions and do-it-yourself projects include non-linear patterns, in which the next video may require to be visually consistent not on the immediate previous video but on earlier ones. Current multi-scene video synthesis approaches fail to meet these consistency requirements. To address this, we propose a contrastive sequential video diffusion method that selects the most suitable previously generated scene to guide and condition the denoising process of the next scene. The result is a multi-scene video that is grounded in the scene descriptions and coherent w.r.t the scenes that require visual consistency. Experiments with real-world action-centric data demonstrate the practicality and improved consistency of our model compared to prior work.
翻译:暂无翻译