We consider the problem of optimizing the trajectory of an Unmanned Aerial Vehicle (UAV). Assuming a traffic intensity map of users to be served, the UAV must travel from a given initial location to a final position within a given duration and serves the traffic on its way. The problem consists in finding the optimal trajectory that minimizes a certain cost depending on the velocity and on the amount of served traffic. We formulate the problem using the framework of Lagrangian mechanics. We derive closed-form formulas for the optimal trajectory when the traffic intensity is quadratic (single-phase) using Hamilton-Jacobi equations. When the traffic intensity is bi-phase, i.e. made of two quadratics, we provide necessary conditions of optimality that allow us to propose a gradient-based algorithm and a new algorithm based on the linear control properties of the quadratic model. These two solutions are of very low complexity because they rely on fast convergence numerical schemes and closed form formulas. These two approaches return a trajectory satisfying the necessary conditions of optimality. At last, we propose a data processing procedure based on a modified K-means algorithm to derive a bi-phase model and an optimal trajectory simulation from real traffic data.


翻译:我们考虑优化无人驾驶航空飞行器(无人驾驶飞行器)轨迹的问题。假设需要用户交通强度图,无人驾驶飞行器必须在一定期限内从一个最初地点到一个最后位置,并在一段时期内为交通提供交通服务。问题在于找到最佳轨道,根据速度和所服务交通量,最大限度地降低一定成本。我们利用拉格朗加机械框架来制定问题。我们利用汉密尔顿-贾科比方程式,为交通强度为四边形(单级)的最佳轨道获取封闭式公式。当交通强度为两边形时,即由两个四边形制成,我们提供了必要的最佳条件,使我们能够根据四边形模型的线性控制特性提出梯度算法和新算法。这两个解决办法由于依赖快速趋同的数字办法和封闭式公式,因此非常复杂。这两种办法都返回一条符合必要最佳条件的轨迹。最后,我们提议根据修改后的K-海量度算法进行数据处理程序,从一个双向模型模拟,从一个经改进的双向数据模拟。

0
下载
关闭预览

相关内容

专知会员服务
141+阅读 · 2021年3月17日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
247+阅读 · 2020年5月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
NIPS 2018 | 轨迹卷积网络 TrajectoryNet
极市平台
8+阅读 · 2019年2月8日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月28日
Arxiv
7+阅读 · 2020年6月29日
VIP会员
相关VIP内容
专知会员服务
141+阅读 · 2021年3月17日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
247+阅读 · 2020年5月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Top
微信扫码咨询专知VIP会员