We present a probabilistic algorithm to test if a homogeneous polynomial ideal $I$ defining a scheme $X$ in $\mathbb{P}^n$ is radical using Segre classes and other geometric notions from intersection theory. Its worst case complexity depends on the geometry of $X$. If the scheme $X$ has reduced isolated primary components and no embedded components supported the singular locus of $X_{\rm red}=V(\sqrt{I})$, then the worst case complexity is doubly exponential in $n$; in all the other cases the complexity is singly exponential. The realm of the ideals for which our radical testing procedure requires only single exponential time includes examples which are often considered pathological, such as the ones drawn from the famous Mayr-Meyer set of ideals which exhibit doubly exponential complexity for the ideal membership problem.


翻译:我们提出了一个概率算法来测试,如果一个单一的多元多边理想用美元来界定一个以美元计的公式($mathbb{P ⁇ n$),使用Segre等级和其他交叉理论的几何概念是激进的,其最坏的情况复杂性取决于X$的几何。如果这个方案用美元减少了孤立的初级成分,而没有嵌入组件支持美元为X ⁇ rm red ⁇ V(\sqrt{I})$的单极点,那么最坏的情况复杂性以美元计倍增倍;在其他所有情况中,复杂性是单倍指数化的。我们激进测试程序只需要单倍指数时间的理想领域包括常常被视为病理性的例子,例如从著名的Mayr-Meyer系列理想中提取的模型,这些模型显示理想会籍问题具有双倍指数复杂性。

0
下载
关闭预览

相关内容

专知会员服务
81+阅读 · 2021年7月31日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年11月28日
Arxiv
0+阅读 · 2021年11月25日
Arxiv
0+阅读 · 2021年11月25日
Arxiv
3+阅读 · 2018年10月18日
Arxiv
3+阅读 · 2014年10月9日
VIP会员
相关VIP内容
专知会员服务
81+阅读 · 2021年7月31日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
相关资讯
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
Top
微信扫码咨询专知VIP会员