In blind compression of quantum states, a sender Alice is given a specimen of a quantum state $\rho$ drawn from a known ensemble (but without knowing what $\rho$ is), and she transmits sufficient quantum data to a receiver Bob so that he can decode a near perfect specimen of $\rho$. For many such states drawn iid from the ensemble, the asymptotically achievable rate is the number of qubits required to be transmitted per state. The Holevo information is a lower bound for the achievable rate, and is attained for pure state ensembles, or in the related scenario of entanglement-assisted visible compression of mixed states wherein Alice knows what state is drawn. In this paper, we prove a general and robust lower bound on the achievable rate for ensembles of classical states, which holds even in the least demanding setting when Alice and Bob share free entanglement and a constant per-copy error is allowed. We apply the bound to a specific ensemble of only two states and prove a near-maximal separation (saturating the dimension bound in leading order) between the best achievable rate and the Holevo information for constant error. This also implies that the ensemble is incompressible -- compression does not reduce the communication cost by much. Since the states are classical, the observed incompressibility is not fundamentally quantum mechanical. We lower bound the difference between the achievable rate and the Holevo information in terms of quantitative limitations to clone the specimen or to distinguish the two classical states.


翻译:在对量子状态进行盲目的压缩时,向发送者Alice提供从已知的组合中抽取的量子状态 $\ rho$的样本(但不知道是多少美元),她向接收者Bob传递足够的量子数据,以便他能够解码近乎完美的标本 $\ rho$。对于许多从组合中抽取的这类国家来说,无试可及的速率是每个州需要传送的量位数。Holevo信息对于可实现的速率来说是一个较低的约束,对于纯状态集合,或者在相关的爱丽丝知道所画的混杂状态的纠缠作用下,她可以实现。在本文中,我们对可实现的量位数差异适用了较低的约束值,而对于可实现的量位数,我们只能对两个州的特定量级数进行约束,并且证明一个接近的量度差异是接近的(在爱丽丝和鲍比的精度中,不可测的量位数值是最低的) 。在可实现的量度中,最难的量的量的量的量的量值是最低的量值 。在可实现的量值的量值中,最可实现的量值的量值的量值的量值中,最量值的量值的量值是可以降低的量值的量值的量值, 。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【2020新书】Python文本分析,104页pdf
专知会员服务
99+阅读 · 2020年12月23日
专知会员服务
44+阅读 · 2020年12月18日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月27日
Arxiv
3+阅读 · 2018年10月18日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关VIP内容
【2020新书】Python文本分析,104页pdf
专知会员服务
99+阅读 · 2020年12月23日
专知会员服务
44+阅读 · 2020年12月18日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
相关资讯
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员