Robustness is of central importance in machine learning and has given rise to the fields of domain generalization and invariant learning, which are concerned with improving performance on a test distribution distinct from but related to the training distribution. In light of recent work suggesting an intimate connection between fairness and robustness, we investigate whether algorithms from robust ML can be used to improve the fairness of classifiers that are trained on biased data and tested on unbiased data. We apply Invariant Risk Minimization (IRM), a domain generalization algorithm that employs a causal discovery inspired method to find robust predictors, to the task of fairly predicting the toxicity of internet comments. We show that IRM achieves better out-of-distribution accuracy and fairness than Empirical Risk Minimization (ERM) methods, and analyze both the difficulties that arise when applying IRM in practice and the conditions under which IRM will likely be effective in this scenario. We hope that this work will inspire further studies of how robust machine learning methods relate to algorithmic fairness.
翻译:在机器学习中,强力是极为重要的,并产生了域性一般化和变化无常的学习领域,这些领域涉及改进与培训分布不同但与培训分布有关的测试分布的性能。鉴于最近的工作表明公平性和稳健性之间有着密切的联系,我们调查强健的ML的算法是否可以用来提高受过有偏向数据培训并经过不偏向数据的测试的分类者的公平性。我们应用了异性风险最小化(IRM)这一域性一般化算法,它运用了一种有因果关系的发现发现方法来寻找稳健的预测者。我们表明,IMM比经验风险最小化(ERM)方法在传播方面更准确、更公平,我们分析了在实践中应用IRM时产生的困难以及IRM在这种情形下可能有效的条件。我们希望,这项工作将启发进一步研究机性学习方法与算性公平的关系。