We propose a novel test statistic for testing exogeneity in the functional linear regression model. In contrast to Hausman-type tests in finite dimensional linear regression setups, a direct extension to the functional linear regression model is not possible. Instead, we propose a test statistic based on the sum of the squared difference of projections of the two estimators for testing the null hypothesis of exogeneity in the functional linear regression model. We derive asymptotic normality under the null and consistency under general alternatives. Moreover, we prove bootstrap consistency results for residual-based bootstraps. In simulations, we investigate the finite sample performance of the proposed testing approach and illustrate the superiority of bootstrap-based approaches. In particular, the bootstrap approaches turn out to be much more robust with respect to the choice of the regularization parameter.
翻译:我们提出了用于测试功能性线性回归模型外源性的新测试统计。 与有限维度线性回归组合中的Hausman型测试相比, 直接扩展功能性线性回归模型是不可能的。 相反, 我们提出基于两个测算器预测的平方差之和的测试功能性线性回归模型外源性无效假设的测试测试测试测试测试的测试统计数据。 我们根据普通替代物的无效性和一致性得出了无症状的正常性。 此外, 我们证明残留的靴子带的恒星一致性结果。 在模拟中, 我们调查了拟议测试方法的有限样本性能,并展示了以靴式回归法为基础的方法的优势。 特别是, 靴式回归法在常规参数的选择方面显得更加有力。