Many software metrics are designed to measure aspects that are believed to be related to software quality. Static software metrics, e.g., size, complexity and coupling are used in defect prediction research as well as software quality models to evaluate software quality. While this indicates a relationship between quality and software metrics, the extent of it is not well understood. Moreover, recent studies found that complexity metrics may be unreliable indicators for understandability of the source code. To explore this relationship, we leverage the intent of developers about what constitutes a quality improvement in their own code base. We manually classify a randomized sample of 2,533 commits from 54 Java open source projects as quality improving depending on the intent of the developer by inspecting the commit message. We distinguish between perfective and corrective maintenance via predefined guidelines and use this data as ground truth for the fine-tuning of a state-of-the art deep learning model for natural language processing. We use the model to increase our data set to 125,482 commits. Based on the resulting data set, we investigate the differences in size and 14 static source code metrics between changes that increase quality, as indicated by the developer, and other changes. We find that quality improving commits are smaller than other commits. Perfective changes have a positive impact on static source code metrics while corrective changes do tend to add complexity. Furthermore, we find that files which are the target of perfective maintenance already have a lower median complexity than other files. Our study results provide empirical evidence for which static source code metrics capture quality improvement from the developers point of view. This has implications for program understanding as well as code smell detection and recommender systems.


翻译:设计许多软件衡量标准是为了衡量被认为与软件质量有关的方面。 静态软件衡量标准,如大小、复杂程度和组合等,用于缺陷预测研究以及软件质量模型,用以评价软件质量。 虽然这表明质量与软件衡量标准之间的关系,但是其程度并不清楚。 此外,最近的研究发现,复杂度指标对于源代码的可理解性指标可能不可靠。 为探索这种关系,我们利用开发者的意图,即他们自己的代码基础的质量改进是什么。我们将54个爪哇开放源项目的2,533个随机抽样样本分类为质量改进,这取决于开发者检查承诺信息的意图。我们通过预设准则区分了质量和软件衡量标准之间的关系,而这些数据的范围则不很深。我们利用该模型将我们的数据集增加到125,482个承诺。我们根据由此产生的数据集,对来自爪哇开放源项目中的2,533个随机抽样样本,即来自54个开放源项目,根据开发者的意图,通过检查承诺信息,将质量评估其质量的改进质量。 我们通过预设准则来区分完美和纠正的维护数据之间的准确性维护标准,我们发现比其他的系统要更精确。 我们发现一个更精确的源,我们发现一个更精确的代码。 我们发现一个更精确的源值是更精确的系统。 我们发现一个更精确的代码, 的代码是更精确的系统。 我们发现一个比其他的源。 我们发现一个更精确的源。 的系统, 改进了比更精确的系统,,我们更精确的代码是更精确的系统。

0
下载
关闭预览

相关内容

代码(Code)是专知网的一个重要知识资料文档板块,旨在整理收录论文源代码、复现代码,经典工程代码等,便于用户查阅下载使用。
专知会员服务
17+阅读 · 2020年9月6日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年7月14日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员