We present a computation model based on a subclass of GP 2 graph programs which can simulate any off-line Turing machine of space complexity O(s(n) log s(n)) in space O(s(n)). The simulation only requires a quadratic time overhead. Our model shares this property with Sch\"onhage's storage modification machines and Kolmogorov-Uspenskii machines. These machines use low-level pointer instructions whereas our GP 2-based model uses pattern-based transformation rules and high-level control constructs.
翻译:我们提出了一个基于GP 2图形程序子分类的计算模型,该模型可以模拟空间O(s)(n)(n)中任何空间复杂O(s)(n)(s)(n)的离线图灵机器。模拟只需要一个二次时间顶部。我们的模型与Sch\“onhage”的存储修改机和Kolmogorov-Uspenskii机器共享这一属性。这些机器使用低级指示器,而我们的GP 2模型则使用基于模式的转换规则和高级控制结构。