Multivariate time series (MTS) forecasting plays an important role in the automation and optimization of intelligent applications. It is a challenging task, as we need to consider both complex intra-variable dependencies and inter-variable dependencies. Existing works only learn temporal patterns with the help of single inter-variable dependencies. However, there are multi-scale temporal patterns in many real-world MTS. Single inter-variable dependencies make the model prefer to learn one type of prominent and shared temporal patterns. In this paper, we propose a multi-scale adaptive graph neural network (MAGNN) to address the above issue. MAGNN exploits a multi-scale pyramid network to preserve the underlying temporal dependencies at different time scales. Since the inter-variable dependencies may be different under distinct time scales, an adaptive graph learning module is designed to infer the scale-specific inter-variable dependencies without pre-defined priors. Given the multi-scale feature representations and scale-specific inter-variable dependencies, a multi-scale temporal graph neural network is introduced to jointly model intra-variable dependencies and inter-variable dependencies. After that, we develop a scale-wise fusion module to effectively promote the collaboration across different time scales, and automatically capture the importance of contributed temporal patterns. Experiments on four real-world datasets demonstrate that MAGNN outperforms the state-of-the-art methods across various settings.
翻译:在智能应用的自动化和优化方面,多变时间序列(MTS)的预测在智能应用的自动化和优化方面起着重要作用。这是一个具有挑战性的任务,因为我们需要考虑复杂的、可变的相互依存性和可变的相互依存性。现有的工作只是在单一的、可变的相互依存性的帮助下学习时间模式。然而,在许多现实世界的多边贸易体系中,存在着多种尺度的时间模式。单一的、可变的相互依存性使得模型更愿意学习一种突出和共享的时间模式。在本文件中,我们建议建立一个多尺度的适应性图形神经网络(MAGNNN)来解决上述问题。MAGN利用一个多尺度的金字塔网络来在不同的时间尺度上保存潜在的时间依赖性。由于不同时间尺度下的不同依赖性可能不同,因此设计一个适应性图表学习模块来推导出特定规模的、没有预先界定的、可变性的相互依存性。鉴于多种规模的特征表现和不同规模的相互依存性,一个跨规模的、跨规模的、可变的、跨规模的、跨规模的、跨时间型的、跨周期的软的、跨比例的软性、跨周期的软性的合作。