In this paper, we study the convergence properties of a randomized block-coordinate descent algorithm for the minimization of a composite convex objective function, where the block-coordinates are updated asynchronously and randomly according to an arbitrary probability distribution. We prove that the iterates generated by the algorithm form a stochastic quasi-Fej\'er sequence and thus converge almost surely to a minimizer of the objective function. Moreover, we prove a general sublinear rate of convergence in expectation for the function values and a linear rate of convergence in expectation under an error bound condition of Tseng type.
翻译:----
本文研究了随机块坐标下降算法在含复合凸目标函数的最小化问题中的收敛性质。其中块坐标是根据任意概率分布异步和随机更新的。本文证明了该算法产生的迭代构成了一个随机拟费叶尔序列,并且几乎肯定地收敛到目标函数的最小值。此外,我们在期望意义下证明了函数值的通用次线性收敛率,并在Tseng类型误差界条件下证明了期望意义下的线性收敛率。