In this work, we explore dimensionality reduction techniques for univariate and multivariate time series data. We especially conduct a comparison between wavelet decomposition and convolutional variational autoencoders for dimension reduction. We show that variational autoencoders are a good option for reducing the dimension of high dimensional data like ECG. We make these comparisons on a real world, publicly available, ECG dataset that has lots of variability and use the reconstruction error as the metric. We then explore the robustness of these models with noisy data whether for training or inference. These tests are intended to reflect the problems that exist in real-world time series data and the VAE was robust to both tests.
翻译:在这项工作中,我们探索了单向和多变时间序列数据的维度减少技术。我们特别比较了波盘分解和进化变异自动代数以降低维度。我们显示,变式自动代数是减少高维数据维度的好选择,如ECG。我们在现实世界上进行这些比较,公开提供ECG数据集,该数据集有许多变异性,并将重建错误作为衡量标准。然后我们探索这些模型的坚固性,这些模型带有吵闹的数据,无论是用于培训还是用于推断。这些测试旨在反映现实世界时间序列数据中存在的问题,而VAE对两种测试都非常有效。