We introduce a novel self-attention mechanism, which we call CSA (Chromatic Self-Attention), which extends the notion of attention scores to attention _filters_, independently modulating the feature channels. We showcase CSA in a fully-attentional graph Transformer CGT (Chromatic Graph Transformer) which integrates both graph structural information and edge features, completely bypassing the need for local message-passing components. Our method flexibly encodes graph structure through node-node interactions, by enriching the original edge features with a relative positional encoding scheme. We propose a new scheme based on random walks that encodes both structural and positional information, and show how to incorporate higher-order topological information, such as rings in molecular graphs. Our approach achieves state-of-the-art results on the ZINC benchmark dataset, while providing a flexible framework for encoding graph structure and incorporating higher-order topology.
翻译:我们介绍了一种新的自注意力机制,称为CSA(色自注意力),它将注意力分数扩展到注意力过滤器,独立地调节特征通道。我们展示了CSA在全自注意力的图Transformer CGT(Chromatic Graph Transformer)中的应用,该模型集成了图结构信息和边特征,完全避开了局部消息传递组件的需要。我们的方法通过节点之间的交互灵活地编码图结构,通过一种相对位置编码方案丰富了原始边特征。我们提出了一种基于随机游走的方案,用于编码结构和位置信息,并展示如何融合高阶拓扑信息,例如分子图中的环。我们的方法在ZINC基准数据集上实现了最先进的结果,同时为编码图结构和融合高阶拓扑提供了一种灵活的框架。