The combination of machine learning models with physical models is a recent research path to learn robust data representations. In this paper, we introduce p$^3$VAE, a generative model that integrates a perfect physical model which partially explains the true underlying factors of variation in the data. To fully leverage our hybrid design, we propose a semi-supervised optimization procedure and an inference scheme that comes along meaningful uncertainty estimates. We apply p$^3$VAE to the semantic segmentation of high-resolution hyperspectral remote sensing images. Our experiments on a simulated data set demonstrated the benefits of our hybrid model against conventional machine learning models in terms of extrapolation capabilities and interpretability. In particular, we show that p$^3$VAE naturally has high disentanglement capabilities. Our code and data have been made publicly available at https://github.com/Romain3Ch216/p3VAE.
翻译:机器学习模型与物理模型的结合是一种学习稳健数据表示的新的研究领域。本文提出了p$^3$VAE,这是一个生成模型,它整合了完美的物理模型,部分地解释了数据背后的真实变异因素。为了充分发挥我们的混合设计,我们提出了一种半监督优化程序和推理方案,还提供了有意义的不确定度估计。我们将p$^3$VAE应用于高分辨率高光谱遥感图像的语义分割。我们在模拟数据集上的实验证明了我们的混合模型相对于常规机器学习模型在外推能力和可解释性方面的优势。特别的,我们展示了p$^3$VAE具有较强的解耦能力。我们的代码和数据已经公开在https://github.com/Romain3Ch216/p3VAE上。