项目名称: 使用GPU加速银道面尘埃辐射图像的高分辨率模拟与多参数反演

项目编号: No.11503052

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 天文学、地球科学

项目作者: 朱佳丽

作者单位: 中国科学院国家天文台

项目金额: 21万元

中文摘要: 为利用国内外最新的大尺度高分辨率银河系巡天数据,准确把握银道面大天区尘埃辐射特性,本项目拟运用GPU并行运算技术,优化现有三维辐射转移模型,形成既适合并行运算、又切合巡天数据特征的模型代码和算法。从而显著提高模型运算速度,高效实现对银道面大天区尘埃远红外辐射图像的高分辨率模拟和多参数反演。通过本项目研究,将改进并创新处理海量巡天数据的技术手段,解决当前巡天观测的高空间覆盖率与数值模型的局部区域模拟之间的矛盾、观测数据的高空间分辨率与数值模型运算低效率之间的矛盾,低成本低耗时地实现大天区图像的高分辨率模拟,有效增加可反演参数数目。同时,为进一步分析不同尺度下尘埃密度三维分布的统计特性、充分挖掘运用LAMOST和FAST等观测设备提供的高质量巡天数据奠定基础。

中文关键词: 辐射转移模型;GPU;并行运算;尘埃;银河系

英文摘要: In order to use the large-scale high-resolution data of the Milky Way surveys performed recently both in China and abroad, and to properly understand the emission properties of dust grains in large areas of the Galactic plane, we plan to apply the GPU parallel computing technologies to optimize the existing three-dimensional radiative transfer model (3D RT model). The 3D RT model will be optimized for using the parallel computing technologies and processing the large-scale high-resolution data. The calculation of the 3D RT model will be accelerated significantly, thus we can efficiently perform the simulation of high resolution images of dust far-infrared emission in large areas of the Galactic plane, and efficiently invert free parameters of the 3D RT model. Our study will improve and innovate technologies for processing and mining massive data, and solve not only the contradiction between the large-scale data and the local region simulation of numerical models, but also the contradiction between the high-resolution data and the low-efficiency calculation of numerical models. Our study will effectively increase the number of inverted parameters to ensure the analysis of statistic properties of dust 3D distribution in both small and large scales, and build the foundation of efficiently and sufficiently using the high-quality survey data from observational facilities like LAMOST and FAST.

英文关键词: Radiative Transfer Model;GPU;Parallel Computing;Dust;Galaxy

成为VIP会员查看完整内容
0

相关内容

【SIGGRAPH 2022】域增强的任意图像风格对比迁移方法
专知会员服务
26+阅读 · 2022年4月20日
基于流线的流场可视化绘制方法综述
专知会员服务
27+阅读 · 2021年12月9日
专知会员服务
36+阅读 · 2021年8月17日
专知会员服务
22+阅读 · 2021年7月31日
专知会员服务
32+阅读 · 2021年7月26日
专知会员服务
124+阅读 · 2021年4月29日
专知会员服务
37+阅读 · 2021年4月23日
【新书册】贝叶斯神经网络,41页pdf
专知会员服务
178+阅读 · 2020年6月3日
【CVPR 2020-商汤】8比特数值也能训练卷积神经网络模型
专知会员服务
26+阅读 · 2020年5月7日
对比,还原真实的GPU池化
CSDN
1+阅读 · 2022年4月13日
基于流线的流场可视化绘制方法综述
专知
0+阅读 · 2021年12月9日
没计算资源?白嫖5000核时CPU/GPU的机会来了。
图与推荐
1+阅读 · 2021年9月24日
借助新的物理模拟引擎加速强化学习
TensorFlow
1+阅读 · 2021年8月16日
使用 TensorFlow 在 CERN LHC 一次性重构数千颗粒子
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
小贴士
相关主题
相关VIP内容
【SIGGRAPH 2022】域增强的任意图像风格对比迁移方法
专知会员服务
26+阅读 · 2022年4月20日
基于流线的流场可视化绘制方法综述
专知会员服务
27+阅读 · 2021年12月9日
专知会员服务
36+阅读 · 2021年8月17日
专知会员服务
22+阅读 · 2021年7月31日
专知会员服务
32+阅读 · 2021年7月26日
专知会员服务
124+阅读 · 2021年4月29日
专知会员服务
37+阅读 · 2021年4月23日
【新书册】贝叶斯神经网络,41页pdf
专知会员服务
178+阅读 · 2020年6月3日
【CVPR 2020-商汤】8比特数值也能训练卷积神经网络模型
专知会员服务
26+阅读 · 2020年5月7日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员