We develop a methodology for proving central limit theorems in network models with strategic interactions and homophilous agents. Since data often consists of observations on a single large network, we consider an asymptotic framework in which the network size tends to infinity. In the presence of strategic interactions, network moments are generally complex functions of components, where a node's component consists of all alters to which it is directly or indirectly connected. We find that a modification of "exponential stabilization" conditions from the stochastic geometry literature provides a useful formulation of weak dependence for moments of this type. We establish a CLT for a network moments satisfying stabilization and provide a methodology for deriving primitive sufficient conditions for stabilization using results in branching process theory. We apply the methodology to static and dynamic models of network formation.
翻译:我们开发了一种方法来证明网络模型中具有战略互动和同源物的中央极限理论。由于数据通常包含对单一大型网络的观测,因此我们考虑的是网络规模趋向无限的无症状框架。在战略互动的出现下,网络时刻通常是各组成部分的复杂功能,其中节点组成部分包含与其直接或间接相关的所有变化。我们发现,从随机地质学文献中修改“极端稳定”条件,为这类时刻的薄弱依赖性提供了有用的配方。我们为一个网络建立CLT,以满足稳定的时期,并提供一种方法,利用分支过程理论的结果为稳定创造原始的足够条件。我们把这种方法应用于静止和动态的网络形成模式。