The proliferation of wireless devices requires flexible network infrastructures to meet the increasing Quality of Service (QoS) requirements. Mobile Robotic Platforms (MRPs) acting as mobile communications cells are a promising solution to provide on-demand wireless connectivity in dynamic networking scenarios. However, the energy consumption of MRPs is a challenge that must be considered to maximize the availability of the wireless networks created. The main contribution of this paper is the experimental evaluation of the energy consumption of an MRP acting as a mobile communications cell. The evaluation considers different actions performed by a real MRP, demonstrating that energy consumption varies significantly with the type of action performed. The results obtained pave the way for optimizing MRP movement in dynamic networking scenarios, maximizing wireless network's availability while minimizing the MRP energy consumption.
翻译:暂无翻译