A family of sets $A$ is said to be an antichain if $x\not\subset y$ for all distinct $x,y\in A$, and it is said to be a distance-$r$ code if every pair of distinct elements of $A$ has Hamming distance at least $r$. Here, we prove that if $A\subset 2^{[n]}$ is both an antichain and a distance-$(2r+1)$ code, then $|A| = O_r(2^n n^{-r-1/2})$. This result, which is best-possible up to the implied constant, is a purely combinatorial strengthening of a number of results in Littlewood--Offord theory; for example, our result gives a short combinatorial proof of H\'alasz's theorem, while all previously known proofs of this result are Fourier-analytic.
翻译:据说,如果每对不同元素的A$有至少1美元之差,就是一个反链(如果$x\not\subset y$)和美元($x,y_A$)的反链。如果每对不同元素的A$有至少1美元之差,就是一个远价-美元代码。这里,我们证明,如果$A\subset 2 ⁇ [n]$($2r+1)是反链和远价($2r+1)的代码,那么,然后$A ⁇ =O_r(2 ⁇ n n ⁇ -r-1/2}美元。这一结果,对于隐含的常数来说是最好的可能,是纯粹的组合式强化了Littlewood-Oford理论中的一些结果;例如,我们的结果提供了H\'alaz理论的简短的组合证据,而以前所知道的关于这一结果的所有证据都是四重分析。