Gait recognition has a rapid development in recent years. However, gait recognition in the wild is not well explored yet. An obvious reason could be ascribed to the lack of diverse training data from the perspective of intrinsic and extrinsic factors. To remedy this problem, we propose to construct a large-scale gait dataset with the help of controllable computer simulation. In detail, to diversify the intrinsic factors of gait, we generate numerous characters with diverse attributes and empower them with various types of walking styles. To diversify the extrinsic factors of gait, we build a complicated scene with a dense camera layout. Finally, we design an automated generation toolkit under Unity3D for simulating the walking scenario and capturing the gait data automatically. As a result, we obtain an in-the-wild gait dataset, called VersatileGait, which has more than one million silhouette sequences of 10,000 subjects with diverse scenarios. VersatileGait possesses several nice properties, including huge dataset size, diverse pedestrian attributes, complicated camera layout, high-quality annotations, small domain gap with the real one, good scalability for new demands, and no privacy issues. Based on VersatileGait, we propose series of experiments and applications for both research exploration of gait in the wild and practical applications. Our dataset and its corresponding generation toolkit will be publicly available for further studies.
翻译:最近几年来,Gait 认识有了迅速的发展。然而,野生的动作识别还没有得到很好的探索。一个明显的原因可能是缺乏从内在和外部因素的角度出发的各种培训数据。为了解决这个问题,我们提议在可控制的计算机模拟的帮助下建立一个大型的音网数据集。为了使动作的内在要素多样化,我们生成了许多具有不同属性的字符,并赋予他们各种行走风格的能力。为了让外形的音轨要素多样化,我们用一个密集的相机布局来构建一个复杂的场景。最后,我们根据United3D设计了一个自动生成的新一代工具包,用于模拟行走情景并自动捕捉图象数据。结果,我们用一个叫做VersatileGait的电动版数据集,它拥有超过100万个具有不同情景主题的银色序列。 VersatileGait拥有一些不错的特性,包括巨大的数据集大小、不同的行人特征、复杂的摄影布局、高品质的图像、小域域间隔间隔,以及真实的、真实的、真实的、真实的、真实的、真实的、真实的、真实的、真实的、真实的、真实的、真实的、真实的、真实的、真实的、真实的、可判读的、用于我们研究的系列的系列的、以及我们研究的、对数据库的、真实的系列的应用应用的应用。