In this paper we present an arbitrary-order fully discrete Stokes complex on general polygonal meshes. Based upon the recent construction of the de Rham fully discrete complex by D. A. Di Pietro and J. Droniou we extend it using the same principle. We complete it with other polynomial spaces related to vector calculus operators and to the Koszul complex required to accommodate the increased smoothness of the Stokes complex. This complex is especially well suited for problem involving Jacobian, divergence and curl, like e.g. the Stokes system or magnetohydrodynamics. We show a complete set of results on the novelties of this complex complementing those of D. A. Di Pietro and J. Droniou: exactness properties, uniform Poincar\'e inequalities and primal and adjoint consistency. We use our new complex on the Stokes system and validate the expected convergence rates with various numerical tests.
翻译:在本文中,我们展示了一个关于普通多边形藻类的完全离散的Stokes综合体。根据D.A.Di Pietro和J.Droiou最近建造的完全离散的De Rham综合体,我们使用同样的原则扩展了该综合体。我们用与矢量微积分操作员和Koszul综合体有关的其他多圆空间来完成它,以适应斯托克斯综合体日益光滑的需要。这个综合体特别适合于涉及Jacobian、差异和卷曲的问题,例如斯托克斯系统或磁力动力学。我们展示了这一综合体创新的一整套结果,以补充D.A.A.Di Pietro和J.Droiou的创新:精确性、统一的Poincar\'e不平等以及原始和连接一致性。我们在斯托克斯系统上使用我们的新综合体,并用各种数字测试来验证预期的汇合率。