This paper presents a new, provably-convergent algorithm for computing the flag-mean and flag-median of a set of points on a flag manifold under the chordal metric. The flag manifold is a mathematical space consisting of flags, which are sequences of nested subspaces of a vector space that increase in dimension. The flag manifold is a superset of a wide range of known matrix groups, including Stiefel and Grassmanians, making it a general object that is useful in a wide variety computer vision problems. To tackle the challenge of computing first order flag statistics, we first transform the problem into one that involves auxiliary variables constrained to the Stiefel manifold. The Stiefel manifold is a space of orthogonal frames, and leveraging the numerical stability and efficiency of Stiefel-manifold optimization enables us to compute the flag-mean effectively. Through a series of experiments, we show the competence of our method in Grassmann and rotation averaging, as well as principal component analysis.
翻译:本文提出了一种新的可证明收敛的算法,用于在弦向量距离度量下计算Flag流形上点集的Flag均值和Flag中位数。Flag流形是一个数学空间,由一系列在维数上增加的嵌套子空间所组成的Flag组成。Flag流形是已知的广泛矩阵群的超集,包括Stiefel和Grassmannian,并且在计算机视觉问题中具有广泛的应用。为了解决计算Flag一阶统计量的难题,我们首先将问题转化为一个涉及约束在Stiefel流形上的辅助变量的问题。Stiefel流形是一个正交框架的空间,它利用Stiefel流形优化的数值稳定性和效率使我们能够有效地计算Flag平均值。通过一系列实验,我们展示了我们的方法在Grassmann和旋转平均以及主成分分析中的竞争力。