We give optimally fast $O(\log p)$ time (per processor) algorithms for computing round-optimal broadcast schedules for message-passing parallel computing systems. This affirmatively answers the questions posed in Tr\"aff (2022). The problem is to broadcast $n$ indivisible blocks of data from a given root processor to all other processors in a (subgraph of a) fully connected network of $p$ processors with fully bidirectional, one-ported communication capabilities. In this model, $n-1+\lceil\log_2 p\rceil$ communication rounds are required. Our new algorithms compute for each processor in the network receive and send schedules each of size $\lceil\log_2 p\rceil$ that determine uniquely in $O(1)$ time for each communication round the new block that the processor will receive, and the already received block it has to send. Schedule computations are done independently per processor without communication. The broadcast communication subgraph is the same, easily computable, directed, $\lceil\log_2 p\rceil$-regular circulant graph used in Tr\"aff (2022) and elsewhere. We show how the schedule computations can be done in optimal time and space of $O(\log p)$, improving significantly over previous results of $O(p\log^2 p)$ and $O(\log^3 p)$. The schedule computation and broadcast algorithms are simple to implement, but correctness and complexity are not obvious. All algorithms have been implemented, compared to previous algorithms, and briefly evaluated on a small $36\times 32$ processor-core cluster.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员