We propose a new hybrid clock distribution scheme that uses global current-mode (CM) and local voltage-mode (VM) clocking to distribute a high-performance clock signal with reduced power consumption. In order to enable hybrid clocking, we propose two new current-to-voltage converters. The converters are simple current receiver circuits based on amplifier and current-mirror circuits. The global clocking is bufferless and relies on current rather than voltage, which reduces the jitter. The local VM network improves compatibility with traditional CMOS logic. The hybrid clock distribution network exhibits 29% lower average power and 54% lower jitter-induced skew in a symmetric network compared to traditional VM clocks. To use hybrid clocking efficiently, we present a methodology to identify the optimal cluster size and the number of required receiver circuits, which we demonstrate using the ISPD 2009, ISPD 2010, and ISCAS89 testbench networks. At 1--2GHz clock frequency, the proposed methodology uses up to 45% and 42% lower power compared to a synthesized buffered VM scheme using ISPD 2009 and ISPD 2010 testbenches, respectively. In addition, the proposed hybrid clocking scheme saves up to 50% and 59% of power compared to a buffered scheme using the ISCAS89 benchmark circuit at 1GHz and 2GHz clock frequency, respectively.


翻译:我们提出一个新的混合时钟分配计划,使用全球流模式(CM)和地方电压模式(VM)进行计时,以分配高性能时钟信号,减少电耗。为了能够进行混合计时,我们提议两个新的电压转换器。转换器是简单的当前接收电路,以放大器和电光光电路为基础。全球时钟没有缓冲,依赖电压而不是电压,从而降低音速。当地VM网络提高了与传统CMOS逻辑的兼容性。混合时钟分配网显示平均电力低29%,缓冲电源驱动的电源低54%。为了能够进行混合时钟转换,我们建议采用一种方法,确定最佳集电量和所需接收电路的数量,我们用2009年ISDDD、2010年ISDDD、2010年ISCA89测试网络来证明。在1-2GH时钟频率上,拟议的方法使用最高至45%和42%的电压,而使用混合缓冲速速度计划,使用2009年ISDDGH 和2010年1至2010年的ISDGHCR 测试基准,分别使用ISD 和2010年ISD 和2010年ISD 和2010年ISD 和2010年ISD标准,分别将ISD 和2010年1-B) 和IMCFD 的系统测试计划。

0
下载
关闭预览

相关内容

ISPD:International Symposium on Physical Design。 Explanation:物理设计国际研讨会。 Publisher:ACM。 SIT: http://dblp.uni-trier.de/db/conf/ispd/
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Clustered Object Detection in Aerial Images
Arxiv
5+阅读 · 2019年8月27日
Arxiv
5+阅读 · 2018年4月17日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员