We examine a reduced membrane model of liquid crystal polymer networks (LCNs) via asymptotics and computation. This model requires solving a minimization problem for a non-convex stretching energy. We show a formal asymptotic derivation of the $2D$ membrane model from $3D$ rubber elasticity. We construct approximate solutions with point defects. We design a finite element method with regularization, and propose a nonlinear gradient flow with Newton inner iteration to solve the non-convex discrete minimization problem. We present numerical simulations of practical interests to illustrate the ability of the model and our method to capture rich physical phenomena.
翻译:我们研究液晶聚合物网络(LCNs)的减少膜模型,通过静态和计算方法进行测试。这个模型要求解决非电流伸展能源的最小化问题。我们展示了3D$橡胶弹性2D$膜模型的正式无症状衍生物。我们用点缺陷构建了近似解决方案。我们设计了固定化的有限元素方法,并提出了非线性梯度流,与牛顿内部循环解决非电流离散最小化问题。我们展示了实际利益模拟,以说明模型和我们捕捉丰富物理现象的方法的能力。