Infrastructure systems, such as power systems, often experience cascading failures. Modeling an infrastructure system as a collection of interdependent networks has recently received attention as a way to explain cascading failures. In this study, we propose an approach to find the set of critical nodes in an interdependent network. For an integer k, we say that a set of k nodes is critical if the initial failures of these k nodes result in the most severe cascading failure among all sets of k nodes. This approach adopts the seminal model of interdependent networks proposed by Buldyrev et al., in which new link failures occur in a network if the connectivity is lost in the paired network. The problem of finding critical nodes is NP-hard; thus the aim of the approach is to accurately solve the problem in feasible time for moderate-size problem instances. The proposed approach consists of two phases. In the first phase, the maximum number of failure propagation stages is computed by repeatedly solving the Boolean satisfiability problem. This number is then used in the second phase, where the set of critical nodes is computed using integer linear programming. The results of applying this approach to a variety of problem instances demonstrate that the approach is feasible for up to at least 30 nodes and can be used as the baseline to compare the performance of heuristic solutions.


翻译:基础设施系统,例如电力系统,往往会经历连锁故障。将基础设施系统建模成一个相互依存的网络集,最近引起了人们的注意,作为解释连锁故障的一种方法。在本研究中,我们提出在相互依存的网络中寻找一套关键节点的方法。对于整数 k,我们说,如果这些 k节点最初的失败导致所有 k节点之间最严重的连锁故障,则一组 k节点至关重要。这个方法采用了Buldyrev 等人提出的相互依存网络的原始模型,在网络中出现新的连接故障,如果连通性在配对的网络中丢失。找到关键节点的问题是硬的;因此,该方法的目的是在中度问题发生时在可行的时间里准确解决问题。拟议的方法分为两个阶段。在第一阶段,通过反复解决Boulean 相容性问题来计算失败传播阶段的最大数目。然后在第二个阶段使用这个数字,在第二个阶段使用关键节点来计算出关键节点在网络中出现新的连接故障,如果连结性网络在配对齐的网络中丢失了连接性网络。找到关键节点的问题是NPPP- hard;因此,这个方法的目的是要用硬的,目的是的,目的是要在最小的基线编程上比较方法的结果是用来将这种应用到一种不同的情况,用来证明。将这种方法的结果是用来用来证明。将这种方法用于对准一种不同的各种的处理。将它为一种不同的处理。将用来用来用来用来用来用来作为一种不同的处理。将它为最接近式的方法,用来比较为最接近性的方法。在最接近式的方法,用来用来用来作为一种不同的处理式式式式。将它为最接近式式式式式式式的处理式式式式式式的处理。将用来用来比较为一种不同的方法。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
19+阅读 · 2018年6月27日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员