Description logic (DL) ontologies extend knowledge graphs (KGs) with conceptual information and logical background knowledge. In recent years, there has been growing interest in inductive reasoning techniques for such ontologies, which promise to complement classical deductive reasoning algorithms. Similar to KG completion, several existing approaches learn ontology embeddings in a latent space, while additionally ensuring that they faithfully capture the logical semantics of the underlying DL. However, they suffer from several shortcomings, mainly due to a limiting role representation. We propose Box$^2$EL, which represents both concepts and roles as boxes (i.e., axis-aligned hyperrectangles) and demonstrate how it overcomes the limitations of previous methods. We theoretically prove the soundness of our model and conduct an extensive experimental evaluation, achieving state-of-the-art results across a variety of datasets. As part of our evaluation, we introduce a novel benchmark for subsumption prediction involving both atomic and complex concepts.
翻译:暂无翻译