This paper introduces a randomized Householder QR factorization (RHQR). This factorization can be used to obtain a well conditioned basis of a set of vectors and thus can be employed in a variety of applications. The RHQR factorization of the input matrix $W$ is equivalent to the standard Householder QR factorization of matrix $\Psi W$, where $\Psi$ is a sketching matrix that can be obtained from any subspace embedding technique. For this reason, the RHQR algorithm can also be reconstructed from the Householder QR factorization of the sketched problem, yielding a single-synchronization randomized QR factorization (reconstructRHQR). In most contexts, left-looking RHQR requires a single synchronization per iteration, with half the computational cost of Householder QR, and a similar cost to Randomized Gram-Schmidt (RGS) overall. We discuss the usage of RHQR factorization in the Arnoldi process and then in GMRES, showing thus how it can be used in Krylov subspace methods to solve systems of linear equations. Based on Charles Sheffield's connection between Householder QR and Modified Gram-Schmidt (MGS), a BLAS2-RGS is also derived. Numerical experiments show that RHQR produces a well conditioned basis whose sketch is numerically orthogonal even for the most difficult inputs, and an accurate factorization. The same results were observed with the high-dimensional operations made in half-precision. The reconstructed RHQR from the HQR factorization of the sketch was stabler than the standard Randomized Cholesky QR. The first version of this work was made available on HAL on the 7th of July 2023 and can be found at https://hal.science/hal-04156310/


翻译:暂无翻译

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Arxiv
0+阅读 · 6月25日
Arxiv
0+阅读 · 6月24日
Arxiv
0+阅读 · 6月24日
Arxiv
0+阅读 · 6月24日
Arxiv
0+阅读 · 6月18日
Arxiv
0+阅读 · 6月17日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
Arxiv
12+阅读 · 2019年2月26日
Arxiv
11+阅读 · 2018年5月13日
Arxiv
22+阅读 · 2018年2月14日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 6月25日
Arxiv
0+阅读 · 6月24日
Arxiv
0+阅读 · 6月24日
Arxiv
0+阅读 · 6月24日
Arxiv
0+阅读 · 6月18日
Arxiv
0+阅读 · 6月17日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
Arxiv
12+阅读 · 2019年2月26日
Arxiv
11+阅读 · 2018年5月13日
Arxiv
22+阅读 · 2018年2月14日
相关基金
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员