In modern scientific studies, it is often imperative to determine whether a set of phenotypes is affected by a single factor. If such an influence is identified, it becomes essential to discern whether this effect is contingent upon categories such as sex or age group, and importantly, to understand whether this dependence is rooted in purely non-environmental reasons. The exploration of such dependencies often involves studying pleiotropy, a phenomenon wherein a single genetic locus impacts multiple traits. This heightened interest in uncovering dependencies by pleiotropy is fueled by the growing accessibility of summary statistics from genome-wide association studies (GWAS) and the establishment of thoroughly phenotyped sample collections. This advancement enables a systematic and comprehensive exploration of the genetic connections among various traits and diseases. additive genetic correlation illuminates the genetic connection between two traits, providing valuable insights into the shared biological pathways and underlying causal relationships between them. In this paper, we present a novel method to analyze such dependencies by studying additive genetic correlations between pairs of traits under consideration. Subsequently, we employ matrix comparison techniques to discern and elucidate sex-specific or age-group-specific associations, contributing to a deeper understanding of the nuanced dependencies within the studied traits. Our proposed method is computationally handy and requires only GWAS summary statistics. We validate our method by applying it to the UK Biobank data and present the results.
翻译:暂无翻译