Speech emotion recognition (SER) has been a popular research topic in human-computer interaction (HCI). As edge devices are rapidly springing up, applying SER to edge devices is promising for a huge number of HCI applications. Although deep learning has been investigated to improve the performance of SER by training complex models, the memory space and computational capability of edge devices represents a constraint for embedding deep learning models. We propose a neural structured learning (NSL) framework through building synthesized graphs. An SER model is trained on a source dataset and used to build graphs on a target dataset. A lightweight model is then trained with the speech samples and graphs together as the input. Our experiments demonstrate that training a lightweight SER model on the target dataset with speech samples and graphs can not only produce small SER models, but also enhance the model performance over models with speech samples only.


翻译:由于边缘装置正在迅速涌现,对边缘装置应用SER是有希望的。尽管通过培训复杂模型对深层学习进行了深入调查,以提高SER的性能,但边缘装置的记忆空间和计算能力是嵌入深层学习模型的制约因素。我们建议通过建立综合图解来建立神经结构学习框架。SER模型在源数据集上接受培训,并用于在目标数据集上建立图解。然后对轻量模型进行培训,将语音样本和图表一起作为投入。我们的实验表明,用语音样本和图表对目标数据集的轻量SER模型进行培训不仅可以产生小型SER模型,而且还可以提高仅使用语音样本的模型的模型性能。

0
下载
关闭预览

相关内容

神经结构学习(NSL)是由谷歌推出的一套开源框架,负责利用结构化信号训练深度神经网络。它能够实现神经图学习,使得开发人员得以利用图表训练神经网络。这些图表可以来自多种来源,例如知识图、医疗记录、基因组数据或者多模关系(例如图像 - 文本对)等。NSL 还可延伸至对抗学习领域,其中各输入实例间的结构以对抗性扰动方式动态构建而成。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
13+阅读 · 2021年7月20日
Arxiv
13+阅读 · 2019年11月14日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员