Modeling and characterizing multiple factors is perhaps the most important step in achieving excess returns over market benchmarks. Both academia and industry are striving to find new factors that have good explanatory power for future stock returns and good stability of their predictive power. In practice, factor investing is still largely based on linear multi-factor models, although many deep learning methods show promising results compared to traditional methods in stock trend prediction and portfolio risk management. However, the existing non-linear methods have two drawbacks: 1) there is a lack of interpretation of the newly discovered factors, 2) the financial insights behind the mining process are unclear, making practitioners reluctant to apply the existing methods to factor investing. To address these two shortcomings, we develop a novel deep multi-factor model that adopts industry neutralization and market neutralization modules with clear financial insights, which help us easily build a dynamic and multi-relational stock graph in a hierarchical structure to learn the graph representation of stock relationships at different levels, e.g., industry level and universal level. Subsequently, graph attention modules are adopted to estimate a series of deep factors that maximize the cumulative factor returns. And a factor-attention module is developed to approximately compose the estimated deep factors from the input factors, as a way to interpret the deep factors explicitly. Extensive experiments on real-world stock market data demonstrate the effectiveness of our deep multi-factor model in the task of factor investing.


翻译:模拟和定性多种因素也许是实现超额市场基准收益的最重要步骤。学术界和产业界都在努力寻找对未来股票回报和预测力稳定具有良好解释力的新因素。在实践中,要素投资在很大程度上仍然以线性多因素模型为基础,尽管许多深层次的学习方法与股票趋势预测和投资组合风险管理的传统方法相比,显示出有希望的结果。然而,现有的非线性方法有两个缺点:(1)对新发现因素缺乏解释,(2)采矿过程背后的金融洞察力不明确,使从业者不愿运用现有方法来进行要素投资。为了解决这两个缺陷,我们开发了一个新的深层次多因素模型,采用具有明确财务洞察力的工业中和市场中性模块,这有助于我们在等级结构中建立一个动态和多关系股票图表,以了解不同层次(例如工业水平和普遍水平)股票关系的图表说明。随后,采用图表关注模块来估计一系列深层因素,使累积要素回报最大化。为了解决这两个缺陷,我们开发了一个全新的多因素模型模型。我们开发了一个采用新的多因素模型,将深度数据输入到深度的市场要素,以精确地解释一个深度的模型。将数据分析从深度的模型,将数据推算出一个从深度数据到深层数据分析到深层的模型。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
45+阅读 · 2022年9月19日
Arxiv
12+阅读 · 2022年4月12日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
18+阅读 · 2021年3月16日
Arxiv
35+阅读 · 2020年1月2日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
Arxiv
17+阅读 · 2018年4月2日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关论文
Arxiv
45+阅读 · 2022年9月19日
Arxiv
12+阅读 · 2022年4月12日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
18+阅读 · 2021年3月16日
Arxiv
35+阅读 · 2020年1月2日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
Arxiv
17+阅读 · 2018年4月2日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员