Adaptive treatment assignment algorithms, such as bandit and reinforcement learning algorithms, are increasingly used in digital health intervention clinical trials. Causal inference and related data analyses are critical for evaluating digital health interventions, deciding how to refine the intervention, and deciding whether to roll-out the intervention more broadly. However the replicability of these analyses has received relatively little attention. This work investigates the replicability of statistical analyses from trials deploying adaptive treatment assignment algorithms. We demonstrate that many standard statistical estimators can be inconsistent and fail to be replicable across repetitions of the clinical trial, even as the sample size grows large. We show that this non-replicability is intimately related to properties of the adaptive algorithm itself. We introduce a formal definition of a "replicable bandit algorithm" and prove that under such algorithms, a wide variety of common statistical analyses are guaranteed to be consistent. We present both theoretical results and simulation studies based on a mobile health oral health self-care intervention. Our findings underscore the importance of designing adaptive algorithms with replicability in mind, especially for settings like digital health where deployment decisions rely heavily on replicated evidence. We conclude by discussing open questions on the connections between algorithm design, statistical inference, and experimental replicability.
翻译:暂无翻译