In the moldable job scheduling problem one has to assign a set of $n$ jobs to $m$ machines, in order to minimize the time it takes to process all jobs. Each job is moldable, so it can be assigned not only to one but any number of the equal machines. We assume that the work of each job is monotone and that jobs can be placed non-contiguously. In this work we present a $(\frac 3 2 + \epsilon)$-approximation algorithm with a worst-case runtime of ${O(n \log^2(\frac 1 \epsilon + \frac {\log (\epsilon m)} \epsilon) + \frac{n}{\epsilon} \log(\frac 1 \epsilon) {\log (\epsilon m)})}$ when $m\le 16n$. This is an improvement over the best known algorithm of the same quality by a factor of $\frac 1 \epsilon$ and several logarithmic dependencies. We complement this result with an improved FPTAS with running time $O(n \log^2(\frac 1 \epsilon + \frac {\log (\epsilon m)} \epsilon))$ for instances with many machines $m> 8\frac n \epsilon$. This yields a $\frac 3 2$-approximation with runtime $O(n \log^2(\log m))$ when $m>16n$. We achieve these results through one new core observation: In an approximation setting one does not need to consider all $m$ possible allotments for each job. We will show that we can reduce the number of relevant allotments for each job from $m$ to $O(\frac 1 \epsilon + \frac {\log (\epsilon m)}{\epsilon})$. Using this observation immediately yields the improved FPTAS. For the other result we use a reduction to the knapsack problem first introduced by Mouni\'e, Rapine and Trystram. We use the reduced number of machines to give a new elaborate rounding scheme and define a modified version of this this knapsack instance. This in turn allows for the application of a convolution based algorithm by Axiotis and Tzamos. We further back our theoretical results through a practical implementation and compare our algorithm to the previously known best result.


翻译:在可变工作时间安排问题中, 需要将一组美元的工作分配到 $1 的机器上, 以便最大限度地减少处理所有工作所需的时间。 每个工作都是可变的, 这样它不仅可以被指派给一个, 任何数量相等的机器。 我们假设每个工作的工作都是单调的, 并且可以不连续地设置工作。 在这项工作中, 我们提出一个$( for 3 2 +\ eepsilon) 的配置算法, 以最坏的运行时间 $( O (n log2) 美元 (form) 来最小的运行时间, 来最小的运行时间值 1 美元 。 当我们通过运行 美元 美元 和 美元 美元 的运行和 美元 美元 的运行时间, 新的算法可以降低。</s>

0
下载
关闭预览

相关内容

自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
43+阅读 · 2022年6月30日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
16+阅读 · 2020年5月20日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
VIP会员
相关VIP内容
自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
43+阅读 · 2022年6月30日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员